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DISTURBANCES OF HIGH MODES IN A SUPERSONIC JET 

N. A. Zheltukhin and N. M. Terekhova UDC 532.526.3.013.4 

This article analyzes and reports the results of numerical modeling of a little-studied 
wavelike phenomenon seen in jet flows. Alternating light and dark bands are visible on 
shadowgraphs of supersonic jets flowing from circular nozzles in the underexpansion regime. 
These bands, present on the initial section (the first and part of the second zones), are 
evidence of the presence of azimuthal flow irregularities in these regions. Figure i [i] 
shows a typical Topler photograph illustrating the above. Such patterns are familiar in 
gasdynamics, although no explanations for them are offered either in this well-known work 
or in monographs on jets. Two recent experimental studies have returned to this question, 
the authors using different approaches in each case. The method laser diagnostics was used 
in [2] to study the disturbance of azimuthal symmetry for a jet discharged into a vacuum in 
the preturbulent regime. It was shown that the compressed layer breaks up into a certain 
number of lobes which are interspersed with gas from the surrounding space. This results 
in the formation of different transverse distributions of density p at different azimuthal 
angles ~. It was suggested such an event might be a consequence of the onset of instability 
in the flow. The authors of [i] probed the region of the compressed layer between a sus- 
pended shock wave and the boundary of a submerged turbulent jet by traditional methods used 
to measure gasdynamic quantities - with a pilot tube inserted into the flow and positioned 
coaxially with possible streamlines. Th~ resulting variations in total pressure indicate 
the existence of azimuthal irregularities of the longitudinal-velocity distributions in the 
region of the compressed layer. The authors stated that this is a consequence of the pres- 
ence of longitudinal vorticity of the Taylor-<;Srtler vortex type in the flow. 

The hypothesis on the wavelike nature of the observed bands is supported by experimental 
data obtained in the related areas of internal gasdynamics, aerodynamics, and the hydrodynam- 
ic stability of boundary flows. Here it has been possible to use visualization methods and 
to reliably identify the alternating bands with eddies. The genesis of these eddies may be 
different, however. Coherent structures in the form of stationary longitudinal vortices 
which are periodic with respect to the transverse coordinate (Benny-Lin vortices [3, 4]) are 
widely known in hydrodynamic stability. They are formed as a result of synergetic processes - 
the spontaneous formation of structures of a certain type of instability wave with a finite 
intensity. Longitudinal eddies connected with curvature of the streamlines are observed on 
the inside surfaces of nozzles [5], in boundary layers on concave surfaces [6], and in sepa- 
rated flows at sites of flow attachment [7]. Without stopping to analyze these flows in 
detail, it is necessary to emphasize that the turbulence mechanism noted above may also be 
operative in the underexpanded jet being examined here. 

Thus, the initial motivation for the present investigation was to check the hypothesis 
of the possible existence of longitudinal vorticity in free supersonic jets in the form of 
stationary eddies located in the region of the compressed layer and oriented with the flow. 
Since the modeling will be done with incomplete information (little experimental data) and 
since it will therefore be impossible to unambiguously establish the origin of the vorticity, 
we will examine structures whose origin is related to unstable oscillations of various types. 

First of al]~ these are waves which are steady over time and are connected with curva- 
ture of the trajectories of the gas due to the intrinsic shock-wave configuration of the 
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Fig. i 

nonisobaric jet. Such waves in semiinfinite flows have been referred to as Taylor-GSrtler 
(T-G) vortices. The same term is used here for free flows, since the role of the solid wall 
is played by the gas of the surrounding space in the case of jets. This is evidenced by the 
presence of a boundary layer (mixing layer). Secondly, we are examining longitudinal eddies 
formed due to the nonlinear interaction of natural large-scale instability waves with the 
mixing layer of a jet. The interaction occurs through oscillation-induced additional forces 
(Reynolds stresses), i.e., they are similar in nature to Benny-Lin (B-L) vortices. We will 
give most of our attention to vortices of the first type, since they were examined first for 
jets. 

Linearization of the basic equations of motion in studies of the characteristics of 
large-scale waves in transitional and turbulent jets is a commonly used approach which has 
proven effective in flows where large-scale turbulence exists in energy equilibrium with the 
average flow. Here, the turbulence determines the form of the mean velocities but does not 
have an effect on waves of a scale which is incommensurate with these velocities, i.e., does 
not have an effect on oscillations such as those that will be examined below. 

Taylor-GSrtler Vortices. The region of the compressed layer through which most of the 
gas flows, between the suspended shock i and the boundary of the jet 2 (see Fig. i), has a 
complex structure. This is a region of large gradients in which the mixing layer 6 is formed 
and where the proximity of the shock wave affects the distribution of the flow parameters. 
Since it is not possible to account for all of the features characterizing acceleration and 
deceleration of the flow, we adopted a simplified scheme which reflects the main features of 
the actual distributions [8] - the features that are important for analyzing waves in jets. 
The flow region is divided into two subregions. By analogy with an isobaric jet, the first 
subregion is appropriately termed the flow core. Here, the velocities and density are con- 
stant, while their derivatives are equal to zero. On a cross section, this subregion ex- 
tends from the axis of the jet to the region of the compressed layer adjacent to the shock, 
where the changes in longitudinal velocity are small. The values of the flow parameters W 0 
and P0 at its boundary are chosen as the determining parameters in the averaging of the equa- 
tions. The radius of the nozzle r 0 is chosen as the geometric scale. The second subregion, 
lying in the compressed layer, is the mixing layer. Here, velocity changes to a zero value. 
Analysis of the photographs and data reported in [i] shows that the transverse dimensions of 
these subregions within the first zone for underexpanded jets is within the range 1:(0.1-0.5). 

Thus, in order to be able to represent the results in a single form, we introduced one more 
scale factor such that for all stations downflow and all 6, the dimensionless coordinate of 
the half-velocity W 0 = 0.5 is equal to unity. Thus, the beginning of the mixing layer is 
determined by the value rl = 1 - 5/2. Assigning the thickness ~ should ensure a spatial er- 
ror z(~). 

We will restrict ourselves to a unidimensional approximation of the field of mean veloc- 
ity u = [0, O, W01. There being no data on the distribution of W0 in [i, 2], we proceeded 
on the basis of the proposition that the longitudinal velocity W 0 correlates satisfactorily 
with the profile constructed on the basis of empirical approximations for a normally expanded 
jet [9]: 

/1,  r < r l ,  
W o (r) = [exp ( - -  0.693~f), r ~ 1'1, 

~l = ( r  - -  r l ) / ( i  - -  r l)  ~> O, r = I -~- 501  - -  t)12. 
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Using the gasdynamic relations for an adiabatically stagnated, nonheat-conducting gas, the 
following relations are obtained for the density P0 and the square of the speed of sound a 2 
[i0]: 

Po =- [1 + ((k i)/2)Mo~(l Wo- )] , 

a ~ ~ (poMo2) -1, k ~ cp/cv, Mo = Wo/a o. 

In the general case, the boundary of the jet and the suspended shock are described 
well by circle arcs of the radii R, R 0 ~ I with the center at a certain point O. The system 
r, ~ , 7 is chosen as the orthogonal coordinate system, where r is the radial coordinate and 

and 7 are angular coordinates. The metric form in the chosen system dS n = H12dr 2 + H22d~+ 
H32d72 (the Lame constants H I = i, H 2 = Rcos7 - Ro, H3 = R, R = R 0 + r), while the velocity 
along the axes is designated as u, v, and w. It is evident that R changes in absolute value 
within the first zone, while R 0 >> r. The Euler equations in (r, ~ , 7) have the form 

ut + uur/H1 + vu~/H2 + wuv/H3 -- v~H2/H1H2 -- w2H3/H1H3 = - - p / p H i ,  

~ + u~/H1 J- vu~H2 + wvv/H 3 + u u H J H 1 H  2 + v w H J H 2 H  3 = --p~pH~, 

wt + uw~H 1 + vw~/H~ ~ wwv/H 3 + u w H J H 1 H  2 - -  v2H~#H2H~ = --pv~H3. 

To s i m p l i f y  t h e  p r o b l e m ,  we t a k e  a s e c t i o n  o f  t h e  j e t  w h e r e  R0 c a n  be  c o n s i d e r e d  c o n s t a n t  
w i t h o u t  a l a r g e  e r r o r .  T h u s ,  c o s 7  ~ 1 and  s i n ~  z O, and  t h i c k e n i n g  o c c u r s  o n l y  due  t o  an  
i n c r e a s e  i n  ~.  Then a f t e r  we i n t r o d u c e  dz  = Rd~,  t h e  s y s t e m  i s  w r i t t e n  a s  

ut @ uur -}- vu~/r + wu z -- v2/r --  [w=/Ro ] = --Pr/P, 

v t + uv~ + w, J r  + wv~ + uvtr ~ --p~/@r, 

w t + uw~ + vw~lr + ww z + [uw/Ro] = --p=tp. 

We augment it with the continuity equation 

up~ + up~/r + wPz + p(ur + %lr + w z + u/r + [U/Bo] ) = 0 

(i) 

and the entropy conservation equation, which is quite sufficient for wave processes 

s t + us r + us~/r 4- WSz = 0 

The additional terms associated with curvature in the longitudinal direction have been placed 
in square brackets. The first of them is the traditional centrifugal force. Only the first 
of them is manifest for a Cartesian coordinate system, the second being the analog of the 
Coriolis forces. The expansion of the continuity equation is connected with allowance for 
additional mass transfer. It has been shown numerically that all of the effects that are 
obtained are determined by the centrifugal term. The effect of the other two terms is very 
small, 
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The fluctuation field is established by spatially growing traveling waves: 

{u', v', w', p' ,  p '} = • v, w, g, H}(r) exp i(~ + nT),  �9 -= az - -  e t .  (2 )  

Here, ~r and n are the longitudinal and azimuthal wave numbers; ~ = ~r + i~i; ~r is the wave 
number; ~i is the growth factor; m is the angular frequency, determining the Strouhal number 

Sh = 2~r0/a(W 0 = 0); ~ is the azimuthal parameter. Since system (i) is invariant relative 
to n and ~, it also describes oscillations of the standing wave type in the azimathal direc- 
tion ~. Such oscillations are obtained with the crossing of traveling waves: 

{u', w', p' ,  p'}----2• tv, g, II}(r)exp i~ cos nqg, (3) 

v' ---- 2xiv(r) exp i 'c sin n% 

The p r o b l e m  o f  f i n d i n g  T-G waves  c o n s i s t s  o f  f i n d i n g  t h e  s o l u t i o n  o f  (3 )  w i t h  ~ = ~r  = 0: 

w' ~- 2• exp (--~iz) cos nq4 v' ~- 2• exp (--a~z) sin nq~. 

Linearized system (i) reduces for (2) or (3) to a single equation relative to the amplitude 

Ll(n  ) = 0, Lx(H ) - -  L ( H ) +  (l/Ro ~ B2 -k B~)H' + 

+ [B(cr -~ -- A2)/A 2 ~ 2B3( t / R  o -{-- A~ -[- B2 -f- B / I B I ) ] I I ,  (4) 

. . . . . .  ' + BI); - - '/P0 - 2A'/A; A 2 A2/a 2 n2/r 2 ~2; B 2BI(W 0 where A ~W 0 m; A l 1/r P0 
BI = W0/R0; B2 = B4(B'/B - 2A'/A); B 3 = ~BI/A; B4 = AZ/B; the operator L describes the equa- 
tion for disturbances without curvatures of the trajectories: 

L(H) ~ 0, L(n) - -  n"  + AIH' + A2H. (5)  

The b o u n d a r y  c o n d i t i o n s  f o r  E a r e  b o u n d e d n e s s  o f  t h e  d i s t u r b a n c e s  in  t h e  r e g i o n s  o f  c o n s t a n t  
v e l o c i t y ,  wh ich  makes  i t  p o s s i b l e  t o  d e s c r i b e  them in  m o d i f i e d  B e s s e l  f u n c t i o n s  [ 1 0 ] .  

I t  t u r n s  o u t  t h a t ,  compared  t o  ( 5 ) ,  Eq. (4 )  p e r m i t s  t h e  e x i s t e n c e  o f  a d d i t i o n a l  c h a r a c -  
t e r i s t i c  solutions which will be referred to here as branches. Branch A (Fig. 2) has the 
same relationship to the eigenvalues for the cylindrical wave (dashed line) that Eqs. (5) 
do and can thus be used to follow the effect of additional forces which arise. The remain- 
ing branches (B-E) are very conservative with respect to changes in the number of the azi- 
muthal mode. Figure 2 shows increments of ~i for the frequency from the range of maximally 
unstable values (Sh = 0.25) for the regime M 0 = 1.5, 6 = 0.15, and R 0 = 800. The presence 
of curvature leads to an increase in the increments of the high azimuthal modes for branch 
A, so that for R 0 = 25 only modes with low azimuthal numbers n = 1-3 are close to the values 
of the initial relation (5). This shows that the characteristics of the main modes realized 
in jets at the frequency of a discrete tone are little distorted by the natural barrel-shaped 
flow structure, which is consistent with the good agreement between the calculations and em- 
pirical measurements of the energy-carrying frequencies. 

The search for T-G waves was conducted with movement from the initial frequencies to 
+ 0. For branch A (solid lines, R 0 = 25) and a cylindrical wave (dashed lines), this is 

shown in Fig. 3. The figure shows the distributions of ~i for different modes. As might be 
expected, no such disturbances exist for wave (5), i.e., only a trivial solution is possible 
at w = 0. The presence of the additional forces leads to manifestation of the disturbances, 
with their increments increasing as n increases and deviating more and more from Eqs. (5). 
It turns out that the additional branches may also produce stationary waves whose increments 
are conservative with respect to a change in frequency. T~e values obtained here can be ex- 
trapolated to w = 0 for sufficiently low frequencies, since (4) has a singularity in the ex- 
ternal field when ~ = 0. Table 1 shows values of ~ for R 0 = 25 and Sh = 0.005 with branches 
A and D. Together with Fig. 4, these values illustrate that the characteristics of the T-G 
waves on branch D (line 4) are nearly the same for any n, that with an increase in n the in- 
crements of the waves from branch A tend toward asymptotes (line 1 for Sh = 0.0825), and 
that the actual values ~i for n > 20 will somewhat exceed the values reported here (line 2 
for Sh = 0.005 and line 3 for Sh = 0.0025). For comparison, the table shows ~i for Sh = 
0.0825 in accordance with Eqs. (5) (line 5). Here, it is appropriate to make certain recom- 
mendations on the experimental determination of ~i" It is best to perform the measurements 
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TABLE i 

05 

branch A branch D 

10 
30 
50 

0,04555--0,5884i 
0,1i47t--0,9925i 
0,17598--t,t705i 

0,03857--0,9529i 
0,03835--0,9526i 
0,039i0--0 9537i 

in several (at least two) sections that are close to each other with respect to the longi- 
tudinal coordinate z, so that the number of eddies does not change. For example, if the 
quantity A I = A0 exp (-~izz) in the first section, then there is a high degree of probability 
that in the second section it will be written A 2 = A0 exp (-~iz2), from which ~i = (i/Az) inA2/ 
A I. Measuring A l and A 2 and knowing Az, we can find ~i" Unfortunately, the interval Az in 
[i] is too large to yet permit evaluation of ~i" 

We studied the dependence of T-G waves on governing flow parameters such as 6 and M 0. 
They can be linked directly with the reduction seen in [i] in the number of eddies down- 
stream within the first zone and with the presence of a second level of accommodation noted 
in [2], the existence of the latter corresponding to the beginning of restructuring of the 
regime. The mechanism of this phenomenon is still unclear, but it can be suggested either 
that waves with the maximum increment are realized in the flow or that oscillations charac- 
terized by a single level of intensification survive in it. The results shown in Fig. 5 

provide numerical substantiation for this hypothesis. The figure gives values of ~i for 
different modes (n = 15, 20, and 26) from branch A at Sh = 0.0025 and R 0 = 25. The x's de- 
note the highest absolute values of ~i" Meanwhile, the degree of intensification exp(-aiz) 
for them with regard to z(6) [ii] is roughly the same. This allows us to construct n(6) 
which confirm that an increase in 6 in the flow should be accompanied by a decrease in the 
number of vortex pairs (curves i and 2 for Sh = 0.005 and 0.0025), which corresponds to [i]. 
Due to the weakness of the dependence ~imax (6), it would be desirable to more rigorously 
determine the error z(6). We found that the Mach numbers have a very slight effect on the 
parameters of low-frequency waves. For example, the change in ~i for M 0 = 1.5 and 4.5 was 
only 4%. 

It was established that the T-G vortices in boundary layers next to walls are inviscid 
in nature [6]. We checked the effect of viscosity for a jet by introducing a correction 
(for viscous forces) into the right side of (4). It is evident from Fig. 6 that the changes 
in ~i for different modes from branches A and D (Sh = 0.005) are small. Thus, the conclusion 
regarding the weak effect of viscosity on T-G waves in the range of realistic Reynolds n,~n- 
bers remains valid for supersonic jets as well. 

It is known that only the real parts of the solutions (4) have a physical significance. 
Thus, the amplitudes of the T-G waves will be u = --ui, v = -vi, w = Wr, p = Hr, ~ = gr" Fig- 
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ure 7 shows the amplitudes of the velocities u, ~, G for n = 30 from branches A and D (solid 
and dashed lines, respectively) when they are normalized so that their maximum rms intensity 
s t is 10% of the maximum mean velocity. 

It should be mentioned that the velocity distributions with the additional branch turn 
out to be quite reasonable. Figure 8 shows transverse-azimuthal distributions of the vari- 
ations of total pressure 6P0 measured in [i] for Sh = 0.0025, n = i0, 6 = 0.15, and e t = 

8.6%. The following formula for the variations can be derived from the well-known gasdynamic 
relation for P0 in [ii] 

5Po = Po ' too] 2 -l- (k - -  I)  M '~ + " 

An analysis of this relation, accurate to within the quadratic terms, shows that 6p0 is 

formed mainly by the longitudinal component of the wave w' (here, M = W0/a). These distri- 
butions are very similar to the experimental curves in [I], although it is difficult to com- 
pare them directly because there is no data on the most important parameters in the calcula- 
tions (mainly ~i and • 

The results obtained here permit the conclusion that Taylor-G~rtler vortices may be 
formed in actual supersonic jets. 
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Benny-Lin Vortices. To substantiate the possibility of the manifestation of this mecha- 
nism in a jet, it is necessary to recall the conclusions made in one of the few studies in 
which pulsations were measured in supersonic jets [12]. It was shown here that the rms fluc- 
tuations of mass velocity might reach 10-15%, with their distributions being adequately de- 
scribed by a linear approximation. As is known, B-L vortices are of the second order with 
respect to the amplitudes of the initial waves. Since the existence of instability waves of 
finite intensity in a flow is not disputed (it was not studied in [I, 2]), the above mecha- 
nism may be operative here. To exclude this as a possibility, it is necessary to show that 
discrete energy-carrying frequencies are absent from the amplitude-frequency spectrum. 

The main aspects of the numerical modeling of vortices of the Benny-Lin type were dis- 
cussed in detail in [13] for small n. Thus, here it will suffice to expand the range to 
large azimuthal numbers. Our study has confirmed that if instability waves of type (3) exist 
in a flow with an intensity great enough so that its square cannot be ignored, then these 
waves are capable of creating additional forces in the flow. These forces are Reynolds 
stresses and are determined by second-order moments. The azimuthal periodicity of the sec- 
ondary flow induced by these forces will be determined by the azimuthal periodicity of the 
stresses 2~/2n: 

<u'2> = 2 .  2 (u~ + u~) e -2~i~ cos 2 n~, <u'v'> = x 2 (u~v~ + u~v 0 e -2=I~ sin 2n% 

so that, for example, a system of 40 vortices (20 vortex pairs) can be created by waves of 
different modes - the mode n = 20 for T-G vortices and n = i0 for B-L vortices. 

The secondary regime is studied on the basis of numerical integration of averaged equa- 
tions of motion containing additional terms which connect the mean and fluctuation values of 
the parameters. Inclusion of additional centrifugal forces intensifies the effects that are 
obtained. Figure 9 shows a graph of the functions ~i(n) for large n and different thick- 
nesses 6 (1-3 - 0.15; 0.i; 0.05) with M 0 = 1.5 and Sh = 0.25. Dashes are used to show lines 
of equal intensification exp(-2~iz), which also makes it possible to connect the existence 
of growing oscillations in the flow for some thickness with the hypothesis of possible re- 
structuring of the flow regime in accordance with the above-described scheme. 

The final distributions of the amplitudes of the secondary flows and the variations of 
total pressure were wholly analogous to those shown in Figs. 7 and 8. They are omitted here 
due to the absence of error estimates for the wave parameters. 

It must be emphasized once more that this qualitatively similar azimuthal distortion 
of the mean flow parameters is actually due to different types of oscillations having dif- 
ferent amplitude and frequency characteristics. The exact nature of the oscillations can 
be established only by a special experiment. The results of the numerical modeling performed 
here can serve as a starting point and help determine the range of problems and parameters 
that needs to be addressed. 
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RESONANCE FLOW RANDOMIZATION IN THE K-REGIME OF BOUNDARY-LAYER TRANSITION 

S. V. Dryganets, Yu. S. Kachanov, V. Ya Levchenko, 
and M. P. Ramazanov 

UDC 532.536 

Introduction. The empirical data presently available indicates the existence of two 
main regimes for the nonlinear disintegration of laminar flow in a boundary layer during the 
origination of turbulence. A survey of studies devoted to discovering and investigating 
these regimes and analyzing the reasons for their differences can be found in [i, 2]. The 
first regime is characterized by pulsations of characteristic bumps on the oscillograms at 
a certain stage of development of the instability wave. These bumps are generally regarded 
as corresponding to the beginning of the development of turbulence spots. This regime was 
first observed more than 30 yrs ago in experiments conducted at the National Bureau of Stan- 
dards (USA) and was described in detail in [3]. In recognition of one of the authors of 
this study (Klebanov) and the fact that this regime has made an important contribution to 
the study of the transition to turbulence, it has been given the name "K-regime." 

In 1976 investigators discovered a new, essentially different transition regime not 
characterized by the above-mentioned bumps or any of the other features associated with the 
K-regime [4]. The transition to turbulence in this regime occurred through a fairly smooth 
increase in the higher harmonics of the main instability wave, the appearance of a broad 
packet of low-frequency pulsations in the spectrum (including the subharmonic of the main 
wave), and their subsequent interaction and filling of the entire spectrum [4] (also see 
[51). 

The existence of two main transition regimes was confirmed by visualization of the per- 
turbation field in a boundary layer in [6, 7]. It was shown in [8] that one regime is re- 
placed by the other. Soon afterward [9, i0], it was explained that the main mechanism re- 
sponsible for the development of a three-dimensional flow and randomization of the flow in 
the new transition regime is subharmonic parametric resonance of the plane main wave (of 
frequency ml) and three-dimensional stochastic background pulsations of the broad continuous 
spectrum within the region of the frequency of the subharmonic ml/2 = mi/2. A mathematical 
model of this interaction in a triplet (low-mode) approximation was first proposed in [ii, 
12]. A weakly linear theory of the formation of the new regime which quantitatively de- 
scribes experimental observations was constructed in [13, 14]. Due to the determining role 
of subharmonic parametric resonances in the new type of transition, this type of disintegra- 
tion of laminar flow is usually referred to in the literature as the "subharmonic" regime. 

However, in accordance with the resonance-wave concept of disintegration proposed in 
[i, 2] and confirmed directly in [15], parametric resonances of the subharmonic type also 
play the main role in the formation of the K-regime bumps. However, in this case we are 
dealing not with a single resonance, but with a system of resonances which intensifies de- 
terministic initiating waves that are coherent with the main wave. In light of this, the 
term "subharmonic" can be used with the same (or even greater) degree of justification in 
regard to the K-regime of transition. Its use to denote a new regime is very unfortunate. 
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